Selection of Water Quality Models for use in Total Maximum Daily Load (TMDL) Analyses

TMDL Model Needs

- Water Quality
 - Common suite of models for use in TMDL assessments
 - Rivers
 - Lakes/Reservoirs
 - Estuaries
- Primary Focus on eutrophication
 - Sediment, nitrogen, phosphorus
- Consideration for linkage to watershed models
- Ecological endpoint(s)

- Model Evaluation/Selection
 - Identify candidate models
 - Published literature
 - Internet
 - EPA reports/documents
 - Establish minimum requirements
 - Screen models based on criteria
 - Select initial candidate models

Sources

- Modeling Watershed Water quality (Donigian et. al., 1995
- EPA IMES (Versar, 1996)
- Evaluating Computer Models (WEST, 1996)
- EPA's Compendium Tools (Shoemaker, et al., 1997)
- Hydrodynamics and Water Quality Modeling (Martin and McCutcheon, 1998)
- Technical Evaluation of Existing Models (Tetra Tech, 1997)
- USGS SMIG web page, 1999

Minimum Requirements

- Well developed representation sediment, nutrients, and some plankton species
- Internally or successfully coupled to a hydrodynamic model
- Documentation of algorithms, operational instructions and flow of execution
- Have had at least 3 applications during the last 10 years with one other than the developer
- Code should be non-proprietary or must be a one-time purchase without a run-time license
- PC-compatible platform is required
- For reservoir and estuary models, multi-dimensional capability

- Perform detailed evaluation candidate models
 - Model theory
 - Translation of theory into mathematical representation
 - Testing/publication
 - Model code and architecture
 - Availability
 - Technical support/expertise
 - Linkage to watershed models

Model Theory

- Three elements
 - hydrodynamics
 - Sediment
 - Nutrient cycling
- Two-tiered approach
 - Head-to-head
 - Dimensionality, transport, and capabilities
 - Internal
 - State variables and processes

Model Support

- Availability of developer or sponsor
- User groups
- Workshops
- Web sites
- Recurring conference/symposia

Model Usage

- Application history
- Resource requirements for application
 - Level of effort
 - Data required
 - Expertise required

- Architecture
 - Static analyzer (Moniot, 1998)
 - Flow or execution
 - Adherence to coding conventions
 - Input and output conventions

- Existence of code
- Code obtainable
- Willingness developer to work on further development and enhancement

- Recommend models for TMDL Applications
- Total of 80 models identified
 - 50 models eliminated in prescreening
- Remaining 30 models
 - 23 removed from consideration
 - Inadequate representation of water quality variables and processes or because lacked dynamic hydraulics
 - Unavailability of code
 - Several reservoir/estuary models failed because of lack of multi-dimensionality

Linkage issues with HSPF

Recommended Models

- Mathematical models for TMDL Applications
 - CE-QUAL-RIV1 high variability rivers and streams
 - CEQUAL-W2 stratified lakes
 - CEQUAL-ICM estuary (3dimensional)
 - EFDC estuary (multidimensional)
 - WASP general applied rivers, lakes, estuaries
 - HSPF RCHRES high variability rivers and streams
 - GLLVHT estuary (multidimensional)

Proprietary code

- Ecological endpoints
 - Initially aquatic ecosystems
 - Ponds, lakes, reservoirs
 - Includes high trophic levels
 (primary, secondary and tertiary consumers)
 - Simulates impact of nutrients and sediment